On the Feasibility of Adversarial Sample Creation Using the Android System API

Author:

Cara FabrizioORCID,Scalas MicheleORCID,Giacinto Giorgio,Maiorca DavideORCID

Abstract

Due to its popularity, the Android operating system is a critical target for malware attacks. Multiple security efforts have been made on the design of malware detection systems to identify potentially harmful applications. In this sense, machine learning-based systems, leveraging both static and dynamic analysis, have been increasingly adopted to discriminate between legitimate and malicious samples due to their capability of identifying novel variants of malware samples. At the same time, attackers have been developing several techniques to evade such systems, such as the generation of evasive apps, i.e., carefully-perturbed samples that can be classified as legitimate by the classifiers. Previous work has shown the vulnerability of detection systems to evasion attacks, including those designed for Android malware detection. However, most works neglected to bring the evasive attacks onto the so-called problem space, i.e., by generating concrete Android adversarial samples, which requires preserving the app’s semantics and being realistic for human expert analysis. In this work, we aim to understand the feasibility of generating adversarial samples specifically through the injection of system API calls, which are typical discriminating characteristics for malware detectors. We perform our analysis on a state-of-the-art ransomware detector that employs the occurrence of system API calls as features of its machine learning algorithm. In particular, we discuss the constraints that are necessary to generate real samples, and we use techniques inherited from interpretability to assess the impact of specific API calls to evasion. We assess the vulnerability of such a detector against mimicry and random noise attacks. Finally, we propose a basic implementation to generate concrete and working adversarial samples. The attained results suggest that injecting system API calls could be a viable strategy for attackers to generate concrete adversarial samples. However, we point out the low suitability of mimicry attacks and the necessity to build more sophisticated evasion attacks.

Publisher

MDPI AG

Subject

Information Systems

Reference46 articles.

1. McAfee Mobile Threat Report,2020

2. IT Threat Evolution Q3 2019. Statisticshttps://securelist.com/it-threat-evolution-q3-2019-statistics/95269

3. Apposcopy: semantics-based detection of Android malware through static analysis

4. FlowDroid

5. Hey, you, get off of my market: Detecting malicious apps in official and alternative android markets;Zhou;NDSS,2012

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3