Exploring Neural Network Hidden Layer Activity Using Vector Fields

Author:

Cantareira Gabriel D.ORCID,Etemad Elham,Paulovich Fernando V.ORCID

Abstract

Deep Neural Networks are known for impressive results in a wide range of applications, being responsible for many advances in technology over the past few years. However, debugging and understanding neural networks models’ inner workings is a complex task, as there are several parameters and variables involved in every decision. Multidimensional projection techniques have been successfully adopted to display neural network hidden layer outputs in an explainable manner, but comparing different outputs often means overlapping projections or observing them side-by-side, presenting hurdles for users in properly conveying data flow. In this paper, we introduce a novel approach for comparing projections obtained from multiple stages in a neural network model and visualizing differences in data perception. Changes among projections are transformed into trajectories that, in turn, generate vector fields used to represent the general flow of information. This representation can then be used to create layouts that highlight new information about abstract structures identified by neural networks.

Funder

FAPESP

Publisher

MDPI AG

Subject

Information Systems

Reference39 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3