A New Compact Triple-Band Triangular Patch Antenna for RF Energy Harvesting Applications in IoT Devices

Author:

Benkalfate ChemseddineORCID,Ouslimani Achour,Kasbari Abed-Elhak,Feham Mohammed

Abstract

This work proposes a new compact triple-band triangular patch antenna for RF energy harvesting applications in IoT devices. It is realized on Teflon glass substrate with a thickness of 0.67 mm and a relative permittivity of 2.1. Four versions of this antenna have been designed and realized with inclinations of 0°, 30°, 60° and 90° to study the impact of the tilting on their characteristics (S11 parameter, radiation pattern, gain) and to explore the possibilities of their implementation in the architectures of electronic equipment according to the available space. The antenna is also realized on waterproof paper with a thickness of 0.1 mm and a relative permittivity of 1.4 for biomedical domain. All the antennas (vertical antenna, tilted antennas and antenna realized on waterproof paper) have a size of 39 × 9 mm2 and cover the 2.45 GHz and 5.2 GHz Wi-Fi bands and the 8.2 GHz band. A good agreement is obtained between measured and simulated results. Radiation patterns show that all the antennas are omnidirectional for 2.45 GHz and pseudo-omnidirectional for 5.2 GHz and 8.2 GHz with maximum measured gains of 2.6 dBi, 4.55 dBi and 6 dBi, respectively. The maximum measured radiation efficiencies for the three antenna configurations are, respectively, of 75%, 70% and 72%. The Specific Absorption Rate (SAR) for the antenna bound on the human body is of 1.1 W/kg, 0.71 W/kg and 0.45 W/kg, respectively, for the three frequencies 2.45 GHz, 5.2 GHz and 8.2 GHz. All these antennas are then applied to realize RF energy harvesting systems. These systems are designed, realized and tested for the frequency 2.45 GHz, −20 dBm input power and 2 kΩ resistance load. The maximum measured output DC power is of 7.68 µW with a maximum RF-to-DC conversion efficiency of 77%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3