Techno-Economic Feasibility Analysis of an Offshore Wave Power Facility in the Aegean Sea, Greece

Author:

Pompodakis Evangelos E.1ORCID,Orfanoudakis Georgios I.2ORCID,Katsigiannis Yiannis2ORCID,Karapidakis Emmanouel2ORCID

Affiliation:

1. Institute of Energy, Environment and Climatic Change, Hellenic Mediterranean University, 731 33 Heraklion, Greece

2. Department of Electrical and Computer Engineering, School of Engineering, Hellenic Mediterranean University, 731 33 Heraklion, Greece

Abstract

The decarbonization goals of each country necessitate the utilization of renewable resources, with photovoltaic (PV) and wind turbine (WT) generators being the most common forms. However, spatial constraints, especially on islands, can hinder the expansion of PV and WT installations. In this context, wave energy emerges as a viable supplementary renewable source. Islands are candidate regions to accommodate wave power resources due to their abundant wave potential. While previous studies have explored the wave energy potential of the Aegean Sea, they have not focused on the electricity production and techno-economic aspects of wave power facilities in this area. This paper aims to fill this knowledge gap by conducting a comprehensive techno-economic analysis to evaluate the feasibility of deploying an offshore wave power facility in the Aegean Sea, Greece. The analysis includes a detailed sensitivity assessment of CAPEX and OPEX variability, calculating key indicators like LCOE and NPV to determine the economic viability and profitability of wave energy investments in the region. Additionally, the study identifies hydraulic efficiency and CAPEX thresholds that could make wave power more competitive compared with traditional energy sources. The techno-economic analysis is conducted for a 45 MW offshore floating wave power plant situated between eastern Crete and Kasos—one of the most wave-rich areas in Greece. Despite eastern Crete’s promising wave conditions, the study reveals that with current techno-economic parameters—CAPEX of 7 million EUR/MW, OPEX of 6%, a 20-year lifetime, and 25% efficiency—the wave energy in this area yields a levelized cost of energy (LCOE) of 1417 EUR/MWh. This rate is significantly higher than the prevailing LCOE in Crete, which is between 237 and 300 EUR/MWh. Nonetheless, this study suggests that the LCOE of wave energy in Crete could potentially decrease to as low as 69 EUR/MWh in the future under improved conditions, including a CAPEX of 1 million EUR/MW, an OPEX of 1%, a 30-year lifetime, and 35% hydraulic efficiency for wave converters. It is recommended that manufacturing companies target these specific thresholds to ensure the economic viability of wave power in the waters of the Aegean Sea.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3