Highly Sensitive Capacitive MEMS for Photoacoustic Gas Trace Detection

Author:

Seoudi Tarek1,Charensol Julien1,Trzpil Wioletta1ORCID,Pages Fanny1ORCID,Ayache Diba1,Rousseau Roman1,Vicet Aurore1ORCID,Bahriz Michael1ORCID

Affiliation:

1. IES, CNRS, University of Montpellier, 34095 Montpellier, France

Abstract

An enhanced MEMS capacitive sensor is developed for photoacoustic gas detection. This work attempts to address the lack of the literature regarding integrated and compact silicon-based photoacoustic gas sensors. The proposed mechanical resonator combines the advantages of silicon technology used in MEMS microphones and the high-quality factor, characteristic of quartz tuning fork (QTF). The suggested design focuses on a functional partitioning of the structure to simultaneously enhance the collection of the photoacoustic energy, overcome viscous damping, and provide high nominal capacitance. The sensor is modeled and fabricated using silicon-on-insulator (SOI) wafers. First, an electrical characterization is performed to evaluate the resonator frequency response and nominal capacitance. Then, under photoacoustic excitation and without using an acoustic cavity, the viability and the linearity of the sensor are demonstrated by performing measurements on calibrated concentrations of methane in dry nitrogen. In the first harmonic detection, the limit of detection (LOD) is 104 ppmv (for 1 s integration time), leading to a normalized noise equivalent absorption coefficient (NNEA) of 8.6 ⋅ 10−8 Wcm−1 Hz−1/2, which is better than that of bare Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS), a state-of-the-art reference to compact and selective gas sensors.

Funder

ANR NOMADE project

Region Languedoc Roussillon

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electronic Noses;Reference Module in Materials Science and Materials Engineering;2024

2. Quartz-Enhanced Photoacoustic Spectroscopy in the Terahertz Spectral Range;Photonics;2023-07-19

3. Photoacoustic infrared gas sensors based on mechanical resonators for environmental to diagnosis applications;Optica Sensing Congress 2023 (AIS, FTS, HISE, Sensors, ES);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3