Stability, Microstructure, and Rheological Properties of CaCO3 S/O/W Calcium-Lipid Emulsions

Author:

Zhang Jie,Li Gongwei,Xu Duoxia,Cao Yanping

Abstract

Calcium carbonate (CaCO3) is a commonly used fortified calcium, but poor suspension stability and easy precipitation seriously limited its food processing and products application. The formation of CaCO3 loaded microparticles based on the form of solid/oil/water (S/O/W) emulsion is a promising method to improve the dispersion stability of CaCO3 in liquid food. In this study, CaCO3, soybean oil, and sodium caseinate (NaCas) were used as the solid, oil, and W phase, respectively. The fabrication involved two steps: the S/O emulsion was prepared by adding CaCO3 into soybean oil by magnetic stirring and high-speed shearing, and then put the S/O crude emulsion into NaCas solution (W phase) to obtain S/O/W emulsion by high-speed blender. The particle size distribution, zeta potential, stability of the microsphere, infrared spectral analysis, and XRD of the S/O/W calcium-lipid microsphere were explored. The stability and rheological mechanism of S/O/W calcium-lipid emulsion were investigated by combining the microstructure, shear rheological, and microrheological properties. It was found that the emulsion particles have more uniform particle size distribution and no aggregation, and the stability of the emulsion was improved with increasing the content of NaCas. The mean square displacement (MSD) curve and solid-liquid equilibrium (SLB) value of S/O/W emulsion increased with the increase in NaCas concentration, and the viscosity behavior is dominant. The results of confocal laser microscopy (CLSM) and cryo-scanning electron microscopy (Cryo-SEM) showed that the three-dimensional network structure of S/O/W emulsions was more compact, and the embedding effect of calcium carbonate (CaCO3) was slightly improved with the increase in NaCas concentration. According to infrared spectrum and XDR analysis, the addition of CaCO3 into the emulsion system caused crystal structure distortion. This study provides a reference for solving the dispersibility of insoluble calcium salt in liquid food.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3