Soft Mango Firmness Assessment Based on Rayleigh Waves Generated by a Laser-Induced Plasma Shock Wave Technique

Author:

Arai Nayuta,Miyake Masafumi,Yamamoto Kengo,Kajiwara ItsuroORCID,Hosoya Naoki

Abstract

Many methods based on acoustic vibration characteristics have been studied to indirectly assess fruit ripeness via fruit firmness. Among these, the frequency of the 0S2 vibration mode measured on the equator has been examined, but soft-flesh fruit do not show the 0S2 vibration mode. In this study, a Rayleigh wave is generated on a soft mango fruit using the impulse excitation force generated by a laser-induced plasma shock wave technique. Then, the flesh firmness of mangoes is assessed in a non-contact and non-destructive manner by observing the Rayleigh wave propagation velocity because it is correlated with the firmness (shear elasticity), density, and Poisson’s ratio of an object. If the changes in the density and Poisson’s ratio are small enough to be ignored during storage, then the Rayleigh wave propagation velocity is strongly correlated to fruit firmness. Here, we measure the Rayleigh wave propagation velocity and investigate the effect of storage time. Specifically, we investigate the changes in firmness caused by ripening. The Rayleigh wave propagation velocity on the equator of Kent mangoes tended to decrease by over 4% in 96 h. The Rayleigh wave measured on two different lines propagated independent distance and showed a different change rate of propagation velocity during 96-h storage. Furthermore, we consider the reliability of our method by investigating the interaction of a mango seed on the Rayleigh wave propagation velocity.

Funder

Tojuro Iijima Foundation for Food Science and Technology

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3