Abstract
Lactobacillus casei (L. casei W8) was encapsulated in pectin methylesterase (PME) charge modified pectin hydrogels; stability and in vitro release were evaluated under simulated gastrointestinal (GI) conditions. PME, 355 U/mL, de-esterified citrus pectin to 35% from 72% degree of esterification (DE). Pectin ζ-potential decreased to about −37 mV and molecular weight decreased from 177 kDa to 143 kDa during charge modification. More than 99% L. casei W8 were encapsulated in block charged, low methoxy pectin (35 mLMP) hydrogels by calcium ionotropic gelation. The integrity of the hydrogels was maintained under simulated GI conditions, and no release of L. casei W8 was observed. Microbial counts of encapsulated L. casei ranged from 6.94 log CFU/g to 10.89 log CFU/g and were 1.23 log CFU/g higher than for unencapsulated L. casei W8. The viability of encapsulated L. casei W8 in wet hydrogels remained the same for 2 weeks, but nearly all flora died after 4 weeks storage at 4 °C. However, freeze dried hydrogels of L. casei W8 were viable for 42 days at 4 °C and 14 days at room temperature. Charge modified pectin hydrogels are potentially good vehicles for colon-targeted delivery carrier for probiotics and longer stability of L. casei W8.
Funder
Natural Science Foundation of Heilongjiang Province
LSU AgCenter Hatch
Subject
Plant Science,Health Professions (miscellaneous),Health(social science),Microbiology,Food Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献