Abstract
For a low-carbon society, it is necessary to extract hydrogen for fuel cells from biogas rather than from fossil fuels. However, impurities contained in the biogas affect the fuel cell; hence, there is a need for system and operation methods to remove these impurities. In this study, to develop a fuel cell system for the effective utilization of biogas-derived hydrogen, the compositional change and concentration of impurities in the hydrogen recirculation system under actual operation were evaluated using process simulation. Then, the mitigation operation for performance degradation using simple purification methods was evaluated on the proton exchange membrane fuel cells (PEMFC) stack. In the process simulation of the hydrogen recirculation system, including the PEMFC stack, the concentration of impurities remained at a level that did not pose a problem to the performance. In the constant voltage test for a simulated gas supply of biogas-derived hydrogen, the conditions for applying the methanation reforming and air bleeding methods were analyzed. As a result, methanation reforming is more suitable for supplying biogas-containing CO to the PEMFC stack for continuous operation.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献