Alendronate as Bioactive Coating on Titanium Surfaces: An Investigation of CaP–Alendronate Interactions

Author:

Despotović Ines1,Petrović Željka2ORCID,Katić Jozefina3ORCID,Mikić Dajana3

Affiliation:

1. Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10002 Zagreb, Croatia

2. Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10002 Zagreb, Croatia

3. Department of Electrochemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, 10000 Zagreb, Croatia

Abstract

The surface modification of dental implants plays an important role in establishing a successful interaction of the implant with the surrounding tissue, as the bioactivity and osseointegration properties are strongly dependent on the physicochemical properties of the implant surface. A surface coating with bioactive molecules that stimulate the formation of a mineral calcium phosphate (CaP) layer has a positive effect on the bone bonding process, as biomineralization is crucial for improving the osseointegration process and rapid bone ingrowth. In this work, the spontaneous deposition of calcium phosphate on the titanium surface covered with chemically stable and covalently bound alendronate molecules was investigated using an integrated experimental and theoretical approach. The initial nucleation of CaP was investigated using quantum chemical calculations at the density functional theory (DFT) level. Negative Gibbs free energies show a spontaneous nucleation of CaP on the biomolecule-covered titanium oxide surface. The deposition of calcium and phosphate ions on the alendronate-modified titanium oxide surface is governed by Ca2+–phosphonate (-PO3H) interactions and supported by hydrogen bonding between the phosphate group of CaP and the amino group of the alendronate molecule. The morphological and structural properties of CaP deposit were investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and attenuated total reflectance Fourier transform infrared spectroscopy. This integrated experimental–theoretical study highlights the spontaneous formation of CaP on the alendronate-coated titanium surface, confirming the bioactivity ability of the alendronate coating. The results provide valuable guidance for the promising forthcoming advancements in the development of biomaterials and surface modification of dental implants.

Funder

Croatian Academy of Sciences and Arts Foundation for 2023: “Mechanism of hydroxyapatite layer formation on the surface of a titanium implant modified with an organic nano-coating”

Publisher

MDPI AG

Reference75 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3