Abstract
Multi-Agent Systems (MAS) have been used to solve several optimization problems in control systems. MAS allow understanding the interactions between agents and the complexity of the system, thus generating functional models that are closer to reality. However, these approaches assume that information between agents is always available, which means the employment of a full-information model. Some tendencies have been growing in importance to tackle scenarios where information constraints are relevant issues. In this sense, game theory approaches appear as a useful technique that use a strategy concept to analyze the interactions of the agents and achieve the maximization of agent outcomes. In this paper, we propose a distributed control method of learning that allows analyzing the effect of the exploration concept in MAS. The dynamics obtained use Q-learning from reinforcement learning as a way to include the concept of exploration into the classic exploration-less Replicator Dynamics equation. Then, the Boltzmann distribution is used to introduce the Boltzmann-Based Distributed Replicator Dynamics as a tool for controlling agents behaviors. This distributed approach can be used in several engineering applications, where communications constraints between agents are considered. The behavior of the proposed method is analyzed using a smart grid application for validation purposes. Results show that despite the lack of full information of the system, by controlling some parameters of the method, it has similar behavior to the traditional centralized approaches.
Subject
Applied Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献