Testing Machine Learning Models to Predict Postoperative Ileus after Colorectal Surgery

Author:

Brydges Garry1ORCID,Chang George J.2,Gan Tong J.1,Konishi Tsuyoshi2,Gottumukkala Vijaya3ORCID,Uppal Abhineet2ORCID

Affiliation:

1. Division of Anesthesiology, Critical Care & Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

2. Department of Colon & Rectal Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

3. Department of Anesthesiology & Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

Abstract

Background: Postoperative ileus (POI) is a common complication after colorectal surgery, leading to increased hospital stay and costs. This study aimed to explore patient comorbidities that contribute to the development of POI in the colorectal surgical population and compare machine learning (ML) model accuracy to existing risk instruments. Study Design: In a retrospective study, data were collected on 316 adult patients who underwent colorectal surgery from January 2020 to December 2021. The study excluded patients undergoing multi-visceral resections, re-operations, or combined primary and metastatic resections. Patients lacking follow-up within 90 days after surgery were also excluded. Eight different ML models were trained and cross-validated using 29 patient comorbidities and four comorbidity risk indices (ASA Status, NSQIP, CCI, and ECI). Results: The study found that 6.33% of patients experienced POI. Age, BMI, gender, kidney disease, anemia, arrhythmia, rheumatoid arthritis, and NSQIP score were identified as significant predictors of POI. The ML models with the greatest accuracy were AdaBoost tuned with grid search (94.2%) and XG Boost tuned with grid search (85.2%). Conclusions: This study suggests that ML models can predict the risk of POI with high accuracy and may offer a new frontier in early detection and intervention for postoperative outcome optimization. ML models can greatly improve the prediction and prevention of POI in colorectal surgery patients, which can lead to improved patient outcomes and reduced healthcare costs. Further research is required to validate and assess the replicability of these results.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3