Population Dynamics of Methanogenic Archea in Co-Digestion Systems Operating Different Industrial Residues for Biogas Production

Author:

da Motta Isabela Gomes Barreto,Santana Larice Aparecida Rezende,Pereira Hyago PasseORCID,de Paula Vanessa Romário,Martins Marta Fonseca,da Costa Carneiro Jailton,Otenio Marcelo HenriqueORCID

Abstract

This study aimed to analyze the population dynamics of methanogenic archaea in co-digestion systems operated under different concentrations of industrial waste such as ricotta whey and brewery waste sludge in association with bovine manure. It was believed that the association of these residues from the food industry combined with bovine manure can contribute to improve the production of biogas. To identify the archaea, DNA extractions and the sequencing of the 16s rRNA gene were performed from 38 samples of influents and effluents. The results indicated that Methanosaeta and Methanosarcina were predominant in the co-digestion of ricotta cheese whey and that Methanosaeta, Methanocorpusculum, and Methanobrevibacter prevailed in the co-digestion of residual brewery sludge. The three ricotta cheese whey biodigesters demonstrated efficiency in methane production; in contrast, residual sludge of brewery biodigesters only showed efficiency in the system operated with 20% co-substrate.

Funder

Brazilian Agricultural Research Corporation

Fundação de Amparo à Pesquisa do Estado de Minas Gerais

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unlocking the potential of second cheese whey: a comprehensive review on valorisation strategies;Reviews in Environmental Science and Bio/Technology;2024-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3