Stability Analysis of Pile-Supported Embankments over Soft Clay Considering Soil Failure between Piles Based on Upper Bound Theorem

Author:

Li Peng-Yu,Dou Hong-QiangORCID,Wang Hao,Nie Wen-Feng,Chen Fu-Quan

Abstract

Most analytical methods used to analyze the stability of pile-supported embankments are based on shear and bending failure of piles. However, the centrifuge test and practical engineering show that rigid pile-supported embankments have a failure mode of soil sliding around piles. Therefore, the stability analysis method of the pile-supported embankment under the failure mode of the soil sliding around piles based on the upper bound theorem is given in this study. First, the failure mechanism is assumed to be a rigid body and slide along two logarithmic spiral surfaces in the embankment and soft soil. The rate of external work and internal energy dissipation of the failure mechanism are further obtained, wherein the internal energy dissipation rate of piles is obtained based on the limit state of soil sliding around piles. Secondly, according to the equation formed by the upper bound theorem, the optimization model of the safety factor function when the potential slip surface is passing through different pile rows is obtained. Then, the algorithm of solving the model is given and the overall safety factor of the pile-supported embankment is obtained. Compared with other methods, the advantage of this method is that it considers the influence of embankment soil property and the width perpendicular to the two-dimensional plane on the pile load and the influence of the soil internal friction angle on the slip surface. Finally, it can be concluded from parametric analysis that: with the increase of the horizontal distance from piles to the slope toe, the reinforcement effect of piles first increases and then decreases; with the decrease of the embankment height and the increase of the soft soil cohesion and internal friction angle, the overall safety factor of the embankment increases.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3