Economic Planning of Energy System Equipment

Author:

Li Biao,Wang Tao,Dong Zhen,Geng Qian,Sun Yi

Abstract

The asset wall (AW) model is widely used by energy companies to forecast the retirement size of equipment. The AW model is a method of arranging historical data in chronological order and then using extrapolation to predict trends in asset size volumes over time. However, most studies using the AW model treat all equipment as a whole and perform a flat extrapolation mechanically, ignoring the impact of technological improvements and price fluctuations. Furthermore, there are relatively few studies on the assetization of equipment replacement scale. This paper fits a Weibull distribution density function and uses Monte Carlo stochastic simulation to determine the retirement age of each piece of equipment, reducing the ambiguity and randomness generated by the AW approach of treating all equipment as a whole. This modified model is noted in this paper as the Weibull–Monte Carlo stochastic simulation asset model wall (WMCAW). The paper then investigated the assetization of equipment replacement size, comparing the three error indicators Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Square Error (RMSE) in order to select the appropriate optimization model for price forecasting from several combinations of models. Finally, the paper verified the feasibility of the WMCAW model using various types of equipment decommissioned in 1970 and compared the forecasting effects of AW and WMCAW. It is found that the curve of the equipment replacement scale predicted by WMCAW is smoother than that of AW, and the forecasting results are more stable and scientific.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference36 articles.

1. Economic replacement policy;Alchian;RAND Corp.,1952

2. Brief analysis of substation equipment technical overhaul project cost management;Chen;Manag. Innov. Pract. Chin. Electr. Power Enterp.,2021

3. Strictly control the influence of technical overhaul project on improving equipment management level;Dong;New Technol. New Prod. China,2020

4. Research on the investment optimization strategy of power grid equipment overhaul project based on life-cycle cost management;Zheng;Electron. Mass,2022

5. Analysis of power grid equipment overhaul plan based on comprehensive technology life evaluation method;Peng;Wirel. Internet Technol.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3