Prediction of Gas Emissions in the Working Face Based on the Desorption Effects of Granular Coal: A Case Study

Author:

Cheng Cheng,Cheng Xiao-Yu,Gao Han,Yue Wen-Ping,Liu Chao

Abstract

The aim of the study in this paper is to establish a prediction model of gas emission in the working face. The gas desorption variation characteristics of coal with different particle sizes were assessed using physical tests and based on the coal body of No. 2 coal seam in Wangjialing Coal Mine, Shanxi, China, to reveal the influence law of coal particle size on coal gas desorption. The gas desorption characteristics in the working face, the law of gas emission of coal cutting, coal caving, coal wall, and remnant coal in the goaf of the production process were then analyzed after establishing a gas emission prediction model based on the particle size of the coal. The accuracy of the gas emission prediction model was finally validated through actual measurement of the coal particle size distribution and gas emission in the test working face. The results of the current study show that the coal particle size is negatively correlated with the gas desorption capacity within a certain range. The initial desorption intensity of the coal gas decreased with an increase in the coal particle size. However, the initial gas desorption intensity and attenuation coefficient of gas emission were constant after a certain level of increase in the coal particle size. It was found that the average error between the gas emission prediction model and the actual gas emission data in the mining process was 5.29% based on the desorption characteristics of granular coal. Therefore, the established gas emission prediction model can characterize the law of gas emission in the actual production process more effectively. Furthermore, it provides reliable support for the prediction and control of gas emissions from the goaf under the condition of fully mechanized mining with top coal caving.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference26 articles.

1. Scientific conception of precise coal mining;Yuan;J. China Coal Soc.,2017

2. China’s energy-water nexus: Assessing water conservation synergies of the total coal consumption cap strategy until 2050

3. Coal-gas compound dynamic disastersin China: A review;Kai;Process Saf. Environ. Prot.,2020

4. An integrated technology for gas control and green mining in deep mines based on ultra-thin seam mining

5. Mathematical geology technique and method for prediction of gas content and emission;Zhang;China Coal Soc.,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3