Interpretative Review of Diesel Spray Penetration Normalized by Length and Time of Breakup (Similarity Law of Diesel Spray and Its Application)

Author:

Arai Masataka

Abstract

Tip penetration of diesel spray is one of the most useful parameters to evaluate diesel combustion dynamics. It has strong relationships with ignition delay, premix/diffusion combustion and engine performance, including exhaust emissions. To discuss general combustion physics in various size sprays, non-dimensional expression of spray tip penetration is reviewed. Length and time of injected fuel jet breakup can be considered as characteristic length and timescale of diesel spray. Then, normalized penetration by length and time of breakup was proposed for the scaling of various diesel sprays. Using the proposed scaling method and similarity law, tip penetrations of various size sprays are collapsed into one simple expression. It becomes a base of similarity law of diesel spray. For example, local or average A/F is uniquely expressed by the normalized length and time of breakup. Penetration of a wall impingement spray is also expressed uniquely by this normalization method and physical parameters affecting the wall impingement spray are explained. Injection rate shaping effect at an initial stage of injection is clearly demonstrated by using this scaling. Further, mixing degrees of diesel spray at an ignition timing and in a combustion phase can be reasonably explained by the equivalence ratio change with non-dimensional elapsed time after injection start.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3