Abstract
The non-Gaussian observation error is a threat for advanced receiver autonomous integrity monitoring (ARAIM), because the protection level of ARAIM based on the Gaussian distribution assumption is insufficient to envelope the positioning error (PE), and the probability of hazardously misleading information (PHMI) is difficult to be satisfied. The traditional non-Gaussian overbounding method is limited by the correlation among observation errors, and the deteriorated continuity risk resulting from the conservative inflation factor for overbounding, simultaneously. We propose an enhanced ARAIM method by position-domain non-Gaussian error overbounding. Furthermore, the upper bound of the inflation factor is imposed to release the conservativeness of overbounding. The simulation and the real-world data are utilized to test the proposed method. The simulation experiment has shown that the global worldwide availability level can be increased to 99.99% by using the proposed method. The real-word data experiment reveals that the proposed method can simultaneously satisfy the integrity risk and continuity risk with the boundary of the inflation factor.
Funder
National Natural Science Foundation of China
National Key Research and Development Program
Fundamental Research Funds for Central Universities
Subject
General Earth and Planetary Sciences
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献