A MongoDB Document Reconstruction Support System Using Natural Language Processing

Author:

Hamaji Kohei1,Nakamoto Yukikazu2

Affiliation:

1. Honda Motor Co., Ltd., Haga 321-3321, Tochigi, Japan

2. Department of Information and Data Science, Nortre Dame Seishin University, Okayama 700-8516, Okayama, Japan

Abstract

Document-oriented databases, a type of Not Only SQL (NoSQL) database, are gaining popularity owing to their flexibility in data handling and performance for large-scale data. MongoDB, a typical document-oriented database, is a database that stores data in the JSON format, where the upper field involves lower fields and fields with the same related parent. One feature of this document-oriented database is that data are dynamically stored in an arbitrary location without explicitly defining a schema in advance. This flexibility violates the above property and causes difficulties for application program readability and database maintenance. To address these issues, we propose a reconstruction support method for document structures in MongoDB. The method uses the strength of the Has-A relationship between the parent and child fields, as well as the similarity of field names in the MongoDB documents in natural language processing, to reconstruct the data structure in MongoDB. As a result, the method transforms the parent and child fields into more coherent data structures. We evaluated our methods using real-world data and demonstrated their effectiveness.

Publisher

MDPI AG

Reference21 articles.

1. A Survey on NoSQL Stores;Davoudian;Acm Comput. Surv.,2017

2. Development for DB schema reconstruction support tool using natural language processing;Hamaji;Comput. Softw.,2022

3. MongoDB (2024, February 02). MongoDB Manual. Available online: https://www.mongodb.com/docs/manual/.

4. Bourhis, P., Reutter, J.L., Suárez, F., and Vrgoč, D. (2017, January 14–19). JSON: Data Model, Query Languages and Schema Specification. Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, Chicago, IL, USA.

5. The Sketch Engine: Ten Years on;Kilgarriff;Lexicography,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3