Effect of Multiple Annular Plates on Vibration Characteristics of Laminated Submarine-like Structures

Author:

Chen Zhengxiong,Zhong Rui,Hu Shuangwei,Qin Bin,Zhao Xing

Abstract

A numerical model for the prediction of vibration behaviors of a laminated submarine structure consisting of spherical, cylindrical, and cone shells with multiple built-in annular plates is reported in this article. With the aid of the first-order shear deformation theory (FSDT) concerning plates and shells, the energy expressions of each substructure are derived. The displacement functions in the energy functionals are expanded by the employment of Legendre orthogonal polynomials and circumferential Fourier series. Then, the Rayleigh–Ritz procedure is performed to obtain the eigenfrequency and the corresponding eigenmode of the submarine model. The correctness of the structural model is examined by comparing the results with existing papers and the finite element method, and the maximum deviation is not more than 2.07%. Additionally, the influence of the plate’s thickness, position, inner diameter, as well as the laying angle on the intrinsic vibration characteristics of laminated submarine-like structure is determined. The results reveal that rational geometry design and assemblage benefit the vibration performance of the combination. Increasing the thickness of all the annular plates, decreasing the inner radius, and regulating the laminated scheme, make remarkable influence on structural free vibration, with the maximum relative changing rate of frequency exceeding 97%, 16%, and 23%, respectively.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3