Blind Frequency Estimation and Symbol Recovery for the Analytically Solvable Chaotic System

Author:

Zhou Ang,Wang Shilian,Luo Junshan

Abstract

The analytically solvable chaotic system (ASCS) is a promising chaotic system in chaos communication and radar fields. In this paper, we propose a maximum likelihood estimator (MLE) to estimate the frequency of ASCS, then a difference-integral (DI) detector is designed with the estimated frequency, and the symbols encoded in the signal are recovered. In the proposed method, the frequency parameter is estimated by an MLE based on the square power of the received signal. The Cramer-Rao lower bound in blind frequency estimation and the bit error performance in symbol detection are analyzed to assess the performance of the proposed method. Numerical results validate the analysis and demonstrate that the proposed symbol detector achieves the error performance with a little cost of 1 dB compared to the coherent detector. The robustness of the proposed method towards parameters is also verified through simulations.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference16 articles.

1. An exactly solvable chaotic differential equation;Corron;Dyn. Contin. Discret. Impuls. Syst. A,2009

2. Exactly solvable chaotic circuit

3. Exact folded-band chaotic oscillator

4. A matched filter for chaos

5. Exactly Solvable Chaos as Communication Waveforms

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3