Exponential Multistep Methods for Stiff Delay Differential Equations

Author:

Zhan RuiORCID,Chen Weihong,Chen Xinji,Zhang Runjie

Abstract

Stiff delay differential equations are frequently utilized in practice, but their numerical simulations are difficult due to the complicated interaction between the stiff and delay terms. At the moment, only a few low-order algorithms offer acceptable convergent and stable features. Exponential integrators are a type of efficient numerical approach for stiff problems that can eliminate the influence of stiffness on the scheme by precisely dealing with the stiff term. This study is concerned with two exponential multistep methods of Adams type for stiff delay differential equations. For semilinear delay differential equations, applying the linear multistep method directly to the integral form of the equation yields the exponential multistep method. It is shown that the proposed k-step method is stiffly convergent of order k. On the other hand, we can follow the strategy of the Rosenbrock method to linearize the equation along the numerical solution in each step. The so-called exponential Rosenbrock multistep method is constructed by applying the exponential multistep method to the transformed form of the semilinear delay differential equation. This method can be easily extended to nonlinear delay differential equations. The main contribution of this study is that we show that the k-step exponential Rosenbrock multistep method is stiffly convergent of order k+1 within the framework of a strongly continuous semigroup on Banach space. As a result, the methods developed in this study may be utilized to solve abstract stiff delay differential equations and can be served as time matching methods for delay partial differential equations. Numerical experiments are presented to demonstrate the theoretical results.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference30 articles.

1. Biological Delay Systems: Linear Stability Theory;MacDonals,1989

2. Dynamics of Controlled Mechanical Systems with Delayed Feedback;Hu,2002

3. Delay Differential Equations with Applications in Population Dynamics;Kuang,1993

4. Retarded Dynamical Systems: Stability and Characteristic Functions;Stépán,1989

5. History of delay equations;Hale,2006

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3