An Improved Whale Optimization Algorithm for Web Service Composition

Author:

Dahan FadlORCID

Abstract

In the current circumstance, the Web Service Composition (WSC) was introduced to address complex user needs concerning the Quality of Services (QoS). In the WSC problem, the user needs are divided into a set of tasks. The corresponding web services are retrieved from the web services discovery according to the functionality of each task, and have different non-functional constraints, such as QoS. The WSC problem is a multi-objective optimization problem and is classified as an NP-hard problem. The whale optimization algorithm (WOA) is proven to solve complex multi-objective optimization problems, and it has the advantage of easy implementation with few control parameters. In this work, we contribute to improving the WOA algorithm, where different strategies are introduced to enhance its performance and address its shortcomings, namely its slow convergence speed, which produces low solution accuracy for the WSC problem. The proposed algorithm is named Improved Whale Optimization Algorithm (IWOA) and has three different strategies to enhance the performance of the WOA. Firstly, the Sine chaos theory is proposed to initiate the WOA’s population and enhance the initialization diversity. Secondly, a Lévy flight mechanism is proposed to enhance the exploitation and exploration of WOA by maintaining the whales’ diversity. Further, a neighborhood search mechanism is introduced to address the trade-off between exploration and exploitation searching mechanisms. Different experiments are conducted with datasets on 12 different scales (small, medium, and large), and the proposed algorithm is compared with standard WOA and five state-of-the-art swarm-based algorithms on 30 different independent runs. Furthermore, four evaluation criteria are used to validate the comparison: the average fitness value, best fitness values, standard deviation, and average execution time. The results show that the IWOA enhanced the WOA algorithm’s performance, where it got the better average and best fitness values with a low variation on all datasets. However, it ranked second regarding average execution time after the WOA, and sometimes third after the WOA and OABC, which is reasonable because of the proposed strategies.

Funder

Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference38 articles.

1. The whale optimization algorithm;Mirjalili;Adv. Eng. Softw.,2016

2. BAT and hybrid BAT meta-heuristic for quality of service-based web service selection;Podili;J. Intell. Syst.,2017

3. Canfora, G., di Penta, M., Esposito, R., and Villani, M.L. (2004, January 15–19). A lightweight approach for QoS-aware service composition. Proceedings of the 2nd International Conference on Service Oriented Computing (ICSOC 04), New York, NY, USA.

4. Plant intelligence based metaheuristic optimization algorithms;Akyol;Artif. Intell. Rev.,2017

5. Ju, C., Ding, H., and Hu, B. (2021). A Hybrid Strategy Improved Whale Optimization Algorithm for Web Service Composition. Comput. J., bxab187.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3