Raman Study of Polycrystalline Si3N4 Irradiated with Swift Heavy Ions

Author:

Zhumazhanova AinashORCID,Mutali Alisher,Ibrayeva AnelORCID,Skuratov VladimirORCID,Dauletbekova Alma,Korneeva EkaterinaORCID,Akilbekov Abdirash,Zdorovets MaximORCID

Abstract

A depth-resolved Raman spectroscopy technique was used to study the residual stress profiles in polycrystalline silicon nitride that was irradiated with Xe (167 MeV, 1 × 1011 cm−2 ÷ 4.87 × 1013 cm−2) and Bi (710 MeV, 1 × 1011 cm−2 ÷ 1 × 1013 cm−2) ions. It was shown that both the compressive and tensile stress fields were formed in the irradiated specimen, separated by a buffer zone that was located at a depth that coincided with the thickness of layer, amorphized due to multiple overlapping track regions. The compressive stresses were registered in a subsurface region, while at a greater depth, the tensile stresses were recorded and their levels reached the maximum value at the end of ion range. The size of the amorphous layer was evaluated from the dose dependence of the full width at half maximum (FWHM) (FWHM of the dominant 204 cm−1 line in the Raman spectra and scanning electron microscopy.

Funder

the Ministry of Education and Science of the Republic of Kazakhstan

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3