Affiliation:
1. Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
Abstract
Let θ(t) denote the increment of the argument of the product π−s/2Γ(s/2) along the segment connecting the points s=1/2 and s=1/2+it, and tn denote the solution of the equation θ(t)=(n−1)π, n=0,1,…. The numbers tn are called the Gram points. In this paper, we consider the approximation of a collection of analytic functions by shifts in the Riemann zeta-function (ζ(s+itkα1),…,ζ(s+itkαr)), k=0,1,…, where α1,…,αr are different positive numbers not exceeding 1. We prove that the set of such shifts approximating a given collection of analytic functions has a positive lower density. For the proof, a discrete limit theorem on weak convergence of probability measures in the space of analytic functions is applied.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献