Simultaneous Features of CC Heat Flux on Dusty Ternary Nanofluid (Graphene + Tungsten Oxide + Zirconium Oxide) through a Magnetic Field with Slippery Condition

Author:

Souayeh Basma12ORCID

Affiliation:

1. Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia

2. Laboratory of Fluid Mechanics, Physics Department, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia

Abstract

The purpose of this work is to offer a unique theoretical ternary nanofluid (graphene/tungsten oxide/zirconium oxide) framework for better heat transfer. This model describes how to create better heat conduction than a hybrid nanofluid. Three different nanostructures with different chemical and physical bonds are suspended in water to create the ternary nanofluid (graphene/tungsten oxide/zirconium oxide). Toxic substances are broken down, the air is purified, and other devices are cooled thanks to the synergy of these nanoparticles. The properties of ternary nanofluids are discussed in this article, including their thermal conductivity, specific heat capacitance, viscosity, and density. In addition, heat transport phenomena are explained by the Cattaneo–Christov (CC) heat flow theory. In the modeling of the physical phenomena under investigation, the impacts of thermal nonlinear radiation and velocity slip are considered. By using the right transformations, flow-generating PDEs are converted into nonlinear ordinary differential equations. The parameters’ impacts on the velocity and temperature fields are analyzed in detail. The modeled problem is graphically handled in MATLAB using a numerical technique (BVP4c). Graphical representations of the important factors affecting temperature and velocity fields are illustrated through graphs. The findings disclose that the performance of ternary nanofluid phase heat transfer is improved compared to dusty phase performance. Furthermore, the magnetic parameter and the velocity slip parameter both experience a slowing-down effect of their respective velocities.

Funder

Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference35 articles.

1. Choi, U., and Eastman, J. (1995, January 12–17). Enhancing thermal conductivity of fluids with nanoparticles. Proceedings of the 1995 International Mechanical Engineering Congress and Exhibition, San Francisco, CA, USA.

2. Convective transport in nano fluids;Buongiorno;J. Heat Transf.,2006

3. Hybrid dusty fluid flow through a Cattaneo–Christov heat flux model;Reddy;Phys. A Stat. Mech. Its Appl.,2020

4. Heat transfer analysis of hybrid nanofluid flow with thermal radiation through a stretching sheet: A comparative study;Waqas;Int. Commun. Heat Mass Transf.,2022

5. Numerical investigation on turbulent flow and heat transfer characteristics of ferro-nanofluid flowing in dimpled tube under magnetic field effect;Tekir;Appl. Therm. Eng.,2021

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3