Thinger.io: An Open Source Platform for Deploying Data Fusion Applications in IoT Environments

Author:

Luis Bustamante Alvaro,Patricio Miguel,Molina José

Abstract

In the last two decades, data and information fusion has experienced significant development due mainly to advances in sensor technology. The sensors provide a continuous flow of data about the environment in which they are deployed, which is received and processed to build a dynamic estimation of the situation. With current technology, it is relatively simple to deploy a set of sensors in a specific geographic area, in order to have highly sensorized spaces. However, to be able to fusion and process the information coming from the data sources of a highly sensorized space, it is necessary to solve certain problems inherent to this type of technology. The challenge is analogous to what we can find in the field of the Internet of Things (IoT). IoT technology is characterized by providing the infrastructure capacity to capture, store, and process a huge amount of heterogeneous sensor data (in most cases, from different manufacturers), in the same way that it occurs in data fusion applications. This work is not simple, mainly due to the fact that there is no standardization of the technologies involved (especially within the communication protocols used by the connectable sensors). The solutions that we can find today are proprietary solutions that imply an important dependence and a high cost. The aim of this paper is to present a new open source platform with capabilities for the collection, management and analysis of a huge amount of heterogeneous sensor data. In addition, this platform allows the use of hardware-agnostic in a highly scalable and cost-effective manner. This platform is called Thinger.io. One of the main characteristics of Thinger.io is the ability to model sensorized environments through a high level language that allows a simple and easy implementation of data fusion applications, as we will show in this paper.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cloud-based system for monitoring event-based hydrological processes based on dense sensor network and NB-IoT connectivity;Environmental Modelling & Software;2024-11

2. An IoT-Based System for Water Parameters Monitoring. Case Study: Fish Farming in El Salvador;2024 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0 & IoT);2024-05-29

3. IoT-based agriculture management techniques for sustainable farming: A comprehensive review;Computers and Electronics in Agriculture;2024-05

4. A Low-Cost IoT System for Water Quality Monitoring in Developing Countries;2024 IEEE 21st Consumer Communications & Networking Conference (CCNC);2024-01-06

5. Designing control and monitoring system of the air conditioning under internet of things;AIP Conference Proceedings;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3