Polyacrylic Acid/Polyaniline-Coated Multimode Interferometer for Ammonia Detection

Author:

Wang Ning1,Zhao Chao1,Long Gang1,Xia Binyun1,Wan Liang1,Niu Kunpeng1,Hou Jianguo1,Wang Jiale1,Lei Lei2,Wang Zhichao3

Affiliation:

1. National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China

2. Zhongshan Institute of Modern Industrial Technology of SCUT, Zhongshan 528437, China

3. Wuhan Bureau of Naval Equipment Department, Wuhan 430070, China

Abstract

A coaxial optical fiber interferometer (COFI) is proposed here for ammonia sensing, which comprises two light-carrying single-mode fibers (SMF) fused to a section of no-core fiber (NCF), thus forming an optical interferometer. The outer surface of the COFI is coated with a layer of polyacrylic acid (PAA)/polyaniline (PAni) film. The refractive index (RI) of the sensitive layer varies when PAA/PAni interacts with ammonia, which leads to the resonance wavelength shift. The surface morphology and structure of the PAA/PAni composites were characterized by using a scanning electron microscope (SEM) and Fourier-transform infrared (FTIR) spectroscopy. When the sensor was exposed to an ammonia atmosphere of different concentrations at room temperature, the sensing performance of the PAA/PAni composite film was superior to that of a sensitive film formed by single-component PAA or PAni. According to the experimental results, the composite film formed by 5 wt% PAA mixed with 2 wt% PAni shows better performance when used for ammonia sensing. A maximum sensitivity of 9.8 pm/ppm was obtained under the ammonia concentration of 50 ppm. In addition, the sensor shows good performance in response time (100 s) and recovery time (180 s) and has good stability and selectivity. The proposed optical fiber ammonia sensor is adapted to monitor leakage in its production, storage, transportation, and application.

Funder

the Open Projects Foundation (No. SKLD 2001) of State Key Laboratory of Optical Fiber and Cable Manufacture Technology

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3