Research on Quantitative Investment Strategies Based on Deep Learning

Author:

Fang YujieORCID,Chen Juan,Xue Zhengxuan

Abstract

This paper takes 50 ETF options in the options market with high transaction complexity as the research goal. The Random Forest (RF) model, the Long Short-Term Memory network (LSTM) model, and the Support Vector Regression (SVR) model are used to predict 50 ETF price. Firstly, the original quantitative investment strategy is taken as the research object, and the 15 min trading frequency, which is more in line with the actual trading situation, is used, and then the Delta hedging concept of the options is introduced to control the risk of the quantitative investment strategy, to achieve the 15 min hedging strategy. Secondly, the final transaction price, buy price, highest price, lowest price, volume, historical volatility, and the implied volatility of the time segment marked with 50 ETF are the seven key factors affecting the price of 50 ETF. Then, two different types of LSTM-SVR models, LSTM-SVR I and LSTM-SVR II, are used to predict the final transaction price of the 50 ETF in the next time segment. In LSTM-SVR I model, the output of LSTM and seven key factors are combined as the input of SVR model. In LSTM-SVR II model, the hidden state vectors of LSTM and seven key factors are combined as the inputs of the SVR model. The results of the two LSTM-SVR models are compared with each other, and the better one is applied to the trading strategy. Finally, the benefit of the deep learning-based quantitative investment strategy, the resilience, and the maximum drawdown are used as indicators to judge the pros and cons of the research results. The accuracy and deviations of the LSTM-SVR prediction models are compared with those of the LSTM model and those of the RF model. The experimental results show that the quantitative investment strategy based on deep learning has higher returns than the traditional quantitative investment strategy, the yield curve is more stable, and the anti-fall performance is better.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference34 articles.

1. Deep learning-based feature engineering for stock price movement prediction

2. Stock prediction using deep learning;Ritika;Mutimedia Tools and Appl.,2017

3. Deep Learning for Forecasting Stock Returns in the Cross-Section;Masaya;Stat. Financ.,2018

4. Financial time series forecasting using support vector machines

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Problems and Solutions of Quantitative Investment in the Chinese Market;Highlights in Business, Economics and Management;2024-09-01

2. A novel Deep Reinforcement Learning based automated stock trading system using cascaded LSTM networks;Expert Systems with Applications;2024-05

3. Applying Online Machine Learning Models for Trading in the Financial Market;2024 International Conference on Communication, Computing and Internet of Things (IC3IoT);2024-04-17

4. Research on Movie Recommendation Algorithm based on Deep Learning;2024 International Conference on Integrated Circuits and Communication Systems (ICICACS);2024-02-23

5. Trading Performance of an Improved PPO Algorithm in the Chinese Stock Market;Proceedings of the 2023 4th International Conference on Big Data Economy and Information Management;2023-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3