Optimal Allocation of PV-STATCOM Devices in Distribution Systems for Energy Losses Minimization and Voltage Profile Improvement via Hunter-Prey-Based Algorithm

Author:

Shaheen Abdullah M.1ORCID,El-Sehiemy Ragab A.2ORCID,Ginidi Ahmed1ORCID,Elsayed Abdallah M.3ORCID,Al-Gahtani Saad F.4ORCID

Affiliation:

1. Department of Electrical Power Engineering, Faculty of Engineering, Suez University, Suez 43533, Egypt

2. Department of Electrical Engineering, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh 33516, Egypt

3. Electrical Engineering Department, Faculty of Engineering, Damietta University, Damietta 34517, Egypt

4. Department of Electrical Power Engineering, Faculty of Engineering, King Khalid University, Abha 61421, Saudi Arabia

Abstract

Incorporating photovoltaic (PV) inverters in power distribution systems via static synchronous compensators (PV-STATCOM) during the nighttime has lately been described as a solution to improve network performance. Hunter prey optimization (HPO) is introduced in this study for efficient PV-STATCOM device allocation in distribution systems. HPO generates numerous scenarios for how animals could act when hunting, some of which have been expanded into stochastic optimization. The PV-STATCOM device allocation issue in distribution networks is structured to simultaneously minimize the electrical energy losses and improve the voltage profile while accounting for variable 24 h loadings. The impacts of varying the number of installed PV-STATCOM devices are investigated in distribution systems. It is tested on two IEEE 33-node and 69-node distribution networks. The effectiveness of the proposed HPO is demonstrated in comparison to the differential evolution (DE) algorithm, particle swarm optimization (PSO), artificial rabbits algorithm (ARA), and golden search optimizer (GSO). The simulation results demonstrate the efficiency of the proposed HPO in adequately allocating the PV-STATCOM devices in distribution systems. For the IEEE 33-node distribution network, the energy losses are considerably decreased by 57.77%, and the voltages variance sum is significantly reduced by 42.84%. The energy losses in the IEEE 69-node distribution network decreased by 57.89%, while voltage variations are reduced by 44.69%. Additionally, the suggested HPO is highly consistent than the DE, PSO, ARA, and GSO. Furthermore, throughout the day, the voltage profile at all distribution nodes surpasses the minimum requirement of 95%.

Funder

Deanship of Scientific Research at King Khalid University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3