Simulation of Internal Manifold-Type Molten Carbonate Fuel Cells (MCFCs) with Different Operating Conditions

Author:

Jung Kyu-Seok1ORCID,Zhang Kai1,Lee Chang-Whan12ORCID

Affiliation:

1. Department of Mechanical Information Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea

2. Department of Mechanical System Design and Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea

Abstract

Molten carbonate fuel cells (MCFCs) use molten carbonate as an electrolyte. MCFCs operate at high temperatures and have the advantage of using methane as a fuel because they can use nickel-based catalysts. We analyzed the performance of an internal manifold-type MCFC, according to operating conditions, using computational fluid dynamics. Different conditions were used for the external and internal reforming-type MCFCs. Flow directions, gas utilization, and operating temperatures were used as the conditions for the external reforming-type MCFCs. The S/C ratio and reforming area were used as the conditions for internal reforming-type MCFCs. A simulation model was developed, considering gas transfer, reforming reaction, and heat transfer. The simulation results of external reforming-type MCFCs showed similar pressure drops in all flow directions. As the gas utilization decreased, the temperature decreased, but the performance increased. The performance improved with increasing operating temperatures. The simulation results for the internal reforming-type MCFCs showed that more hydrogen was produced as the S/C ratio decreased, and the performance increased accordingly. More hydrogen was produced as the reforming area increased. However, similar performance was obtained when the reforming area contained the same active area. The external and internal reforming-type MCFCs were compared under the same conditions. The efficiency of the external reforming-type MCFCs is higher than that of the internal reforming-type MCFCs.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural Network Modeling of an Electrochemical Ammonia Synthesizer for Smart Grid Applications;2023 8th IEEE Workshop on the Electronic Grid (eGRID);2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3