Optimization of the Electrochemical Discharge of Spent Li-Ion Batteries from Electric Vehicles for Direct Recycling

Author:

Lee Hyunseok12,Kim Yu-Tack1,Lee Seung-Woo23ORCID

Affiliation:

1. EV, ESS Battery Reuse & Refabrication Center, Korea Battery Industry Association, 391-1 Dongsu-dong, Naju-si 58277, Jeollanam-do, Republic of Korea

2. Department of Fine Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea

3. Center for Biofunctional Materials, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea

Abstract

Numerous studies have been conducted on spent lithium-ion batteries (LIBs) recycled from electric vehicles. Research on pre-processing techniques to safely disassemble spent LIB packs has mainly focused on water-based discharge methods, such as salt-water discharge. However, salt-water discharge corrodes the electrodes and case, causing internal contamination. Therefore, we propose an electrical discharge process that is suitable for the direct recycling and safe disassembly of spent Li-ion batteries. Spent LIBs from electric vehicles (EV) that were scrapped after EV operation were recovered and electrochemically discharged to voltages of 0, 1, 2, and 2.5 V. These discharged spent LIBs were analyzed through X-ray diffraction, scanning electron microscopy, and electrochemical impedance spectroscopy. The spent LIB with a state-of-health (SoH) of 66.8% exhibited significantly increased swelling and bulging when over-discharged. Notably, the discharging of the spent battery to 0 V increased the thickness of the cell by 115%, which could result in a fire and/or explosion. After being discharged to 0 V, the voltage was able to recover to 2.689 V. The appropriate voltage for the discharge process was estimated to be 2.5 V. The proposed electrical discharge process will be suitable for the direct recycling of spent LIBs in the form of pouch cells.

Funder

National Research Foundation of Korea

Ministry of Trade, Industry & Energy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3