A Maximum Power Point Tracking Technique for a Wind Power System Based on the Trapezoidal Rule

Author:

Pande Jayshree1ORCID,Nasikkar Paresh1

Affiliation:

1. Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, Maharashtra, India

Abstract

This work presents a new trapezoidal-rule-based variation of the perturb and observe algorithm to track the point with maximum power for a wind energy conversion system. The algorithm works in three steps. In the first step, the trapezoidal-rule-based division of the power curve into trapezoids of equal width is carried out. In the second step, areas of the adjacent trapezoids are compared to identify the trapezoid with the largest area. In the third step, the conventional perturb and observe algorithm is employed in the trapezoid having the largest area to capture the point of maximum power. The algorithm is simulated in MATLAB/SIMULINK to check the efficacy in capturing the maximum power. The simulation results suggest that the proposed method performs well under fluctuating wind conditions with improved yielded power. An effort to achieve simplicity for implementation and effectively track the maximum power point is made and presented.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3