Dynamics of Tribofilm Formation in Boundary Lubrication Investigated Using In Situ Measurements of the Friction Force and Contact Voltage

Author:

Tsai Anna E.1,Komvopoulos Kyriakos1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA

Abstract

The complex dynamics of tribofilm formation on boundary-lubricated steel surfaces were investigated in real time by combining in situ measurements of the temporal variation of the coefficient of friction and contact voltage. Sliding experiments were performed with various blends consisting of base oil, zinc dialkyl dithiophosphate (ZDDP) additive, and two different dispersants at an elevated oil temperature for a wide range of normal load and fixed sliding speed. The evolution of the transient and steady-state coefficient of friction, contact voltage, and critical sliding distance (time) for stable tribofilm formation were used to evaluate the tribological performance of the tribofilms. The blend composition affected the load dependence of the critical sliding distance for stable tribofilm formation. Tribofilm friction was influenced by competing effects between the additive and the dispersants. Among various formulations examined, the tribofilm with the best friction characteristics was found to be the blend consisting of base oil, a small amount of ZDDP, and a bis-succinimide dispersant treated with ethylene carbonate. The results of this study demonstrate the effectiveness of the present experimental approach to track the formation and removal of protective tribofilms under boundary lubrication conditions in real time.

Funder

Chevron Oronite Company, Richmond, CA, USA

Publisher

MDPI AG

Reference35 articles.

1. Formation and Characterization of Tribofilms;Kar;ASME J. Tribol.,2008

2. Boundary Lubricating Films: Formation and Lubrication Mechanism;Hsu;Tribol. Int.,2005

3. Chemical and Mechanical Analysis of Tribofilms from Fully Formulated Oils. Part 1—Films on 52100 Steel;Pereira;Tribology,2007

4. A Review of Current Understanding in Tribochemical Reactions Involving Lubricant Additives;Chen;Friction,2023

5. Some Mechanisms of Tribofilm Formation in Metal/Metal and Ceramic/Mmetal Sliding Interactions;Biswas;Wear,2000

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3