Enhanced Cell Performance and Improved Catalyst Utilization for a Direct Methanol Fuel Cell with an In-Plane Gradient Loading Catalyst Electrode

Author:

Chang Zhixin,Zhang Jiajia,Zhang Weiqi,Su Huaneng,Xing Lei,Ma Qiang,Zhang Hong,Xu QianORCID

Abstract

Direct methanol fuel cells (DMFCs) offer high energy density, simple liquid fuel storage, and the ability to operate at ambient temperature. They may be used in a variety of portable mobile power supplies, small civilian power supplies, and automotive power supplies. However, in the process of electrochemical reaction inside a DMFC, because the reactants and products are distributed unevenly, the in-plane concentration of reactants and reaction rate are different; thus, the current density generated in the active area shows a high degree of non-uniformity. The high local current density can easily lead to the acceleration of DMFC aging. As a result, the operating cost of the DMFC is increased and the service life is shortened, which limits the commercial application of DMFCs. In this work, we develop an in-plane gradient loading catalyst. The loading on both the anode and cathode catalysts was lower near the inlet and higher close to the outlet. The experimental results of the single-cell test show that the performance of the gradient loading catalyst electrode was enhanced by up to 19.8% compared with the uniform loading catalyst at 60 °C for the same catalyst loading, especially under high current densities. In addition, the catalyst utilization was improved for the gradient loading catalyst electrode. Hence, the proposed approach shows potential for reducing the cost and increasing the service life of DMFCs.

Funder

Grants from the NSFC, China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3