Evaluation of the Thermal and Morphological Properties of γ-Irradiated Chitosan-Glycerol-Based Polymeric Films

Author:

Al-Masry Waheed A.ORCID,Haider SajjadORCID,Mahmood Asif,Khan MujeebORCID,Adil Syed FarooqORCID,Siddiqui Mohammed Rafiq H.ORCID

Abstract

Industry-sponsored research has intensified to find suitable substitutes for synthetic polymers. For this purpose, biopolymers are promising materials that are extracted from renewable resources. However, there are areas of concern (biopolymers are mostly brittle in the dry state) that require further research before they are used in advanced applications. To overcome this, plasticizers are often added to biopolymers to enhance their physicochemical properties. In this study, chitosan (CH)-glycerol (GL)-based polymeric films were prepared by a simple drop-casting technique, and the influence of a plasticizer (GL) on the properties of chitosan films was analyzed. Additionally, the as-prepared samples were irradiated with γ-rays (60Co γ rays with a dose of 102 kGy) to study the effect of γ-irradiation on the properties of polymeric composites. To achieve this, different samples were prepared by varying the amount of GL. FT-IR analysis revealed the interruption of hydrogen bonding in chitosan by the incorporation of GL. This led to the chain-spreading of CH, which ultimately increased the flexibility of the composite films (CH-GL). The DSC of the CH film showed two peaks: one endothermic peak below 100 °C (due to water vapor) and a second exothermic peak that appeared between 130 and 360 °C (degradation of the amino group). Plasticization of CH films with GL was confirmed by DSC, where the exothermic degradation was converted into an endothermic peak. Depending upon the amount of GL, γ-irradiation considerably affected the chemical structure of CH by breaking the carbohydrate and pyranose rings; this led to a decrease in the crystallinity of the composite films. The changes studied in the DSC and TGA analysis complemented each other. γ-irradiation also affected the morphology of the films, which changed from smooth and homogeneous to roasted structures, with random swelling on the surface of the films. This swelling reflected the degradation of the surfaces into thin layers. Considering the changes that occurred in the films post-γ-irradiation, it can be inferred that the irradiation dose of 102 kGy is sufficient to degrade as-prepared biopolymer composites.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3