Analyzing the Performance of a Miniature 3D Wind Sensor for Mars

Author:

Domínguez-Pumar ManuelORCID,Kowalski LukaszORCID,Jiménez Vicente,Rodríguez IvetteORCID,Soria ManelORCID,Bermejo Sandra,Pons-Nin JoanORCID

Abstract

This paper analyzes the behavior of a miniature 3D wind sensor designed for Mars atmosphere. The sensor is a spherical structure of 10 mm diameter divided in four sectors. By setting all the sectors to constant temperature, above that of the air, the 3D wind velocity vector can be measured. Two sets of experiments have been performed. First, an experimental campaign made under typical Mars conditions at the Aarhus Wind Tunnel Simulator is presented. The results demonstrate that both wind speed and angle can be efficiently measured, using a simple inverse algorithm. The effect of sudden wind changes is also analyzed and fast response times in the range of 0.7 s are obtained. The second set of experiments is focused on analyzing the performance of the sensor under extreme Martian wind conditions, reaching and going beyond the Dust Devil scale. To this purpose, both high-fidelity numerical simulations of fluid dynamics and heat transfer and experiments with the sensor have been performed. The results of the experiments, made for winds in the Reynolds number 1000–2000 range, which represent 65–130 m/s of wind speed under typical Mars conditions, further confirm the simulation predictions and show that it will be possible to successfully measure wind speed and direction even under these extreme regimes.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3