Enhanced Path Planning and Obstacle Avoidance Based on High-Precision Mapping and Positioning

Author:

Zhang Feng1,Li Leijun2ORCID,Xu Peiquan13ORCID,Zhang Pengyu4

Affiliation:

1. School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

2. Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada

3. Shanghai Collaborative Innovation Center of Laser Advanced Manufacturing Technology, Shanghai University of Engineering Science, Shanghai 201620, China

4. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 201900, China

Abstract

High-precision positioning and multi-target detection have been proposed as key technologies for robotic path planning and obstacle avoidance. First, the Cartographer algorithm was used to generate high-quality maps. Then, the iterative nearest point (ICP) and the occupation probability algorithms were combined to scan and match the local point cloud, and the positions and attitudes of the robot were obtained. Furthermore, Sparse Matrix Pose Optimization was carried out to improve the positioning accuracy. The positioning accuracy of the robot in x and y directions was kept within 5 cm, the angle error was controlled within 2°, and the positioning time was reduced by 40%. An improved timing elastic band (TEB) algorithm was proposed to guide the robot to move safely and smoothly. A critical factor was introduced to adjust the distance between the waypoints and the obstacle, generating a safer trajectory, and increasing the constraint of acceleration and end speed; thus, smooth navigation of the robot to the target point was achieved. The experimental results showed that, in the case of multiple obstacles being present, the robot could choose the path with fewer obstacles, and the robot moved smoothly when facing turns and approaching the target point by reducing its overshoot. The proposed mapping, positioning, and improved TEB algorithms were effective for high-precision positioning and efficient multi-target detection.

Funder

Natural Science Foundation of Shanghai

Publisher

MDPI AG

Reference29 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3