Ternary Precursor Centrifuge Rolling Bearing Fault Diagnosis Based on Adaptive Sample Length Adjustment of 1DCNN-SeNet

Author:

Xu Feng12,Sui Zhen2,Ye Jiangang3,Xu Jianliang1

Affiliation:

1. Quzhou College of Technology, Quzhou 324000, China

2. College of Communication Engineering, Jilin University, Changchun 130022, China

3. Quzhou Special Equipment Inspection Center, Quzhou 324000, China

Abstract

To address the issues of uneven sample lengths in the centrifuge machine bearings of the ternary precursor, inaccurate fault feature extraction, and insensitivity of important feature channels in rolling bearings, a rolling bearing fault diagnosis method based on adaptive sample length adjustment of one-dimensional convolutional neural network (1DCNN) and squeeze-and-excitation network (SeNet) is proposed. Firstly, by controlling the cumulative variance contribution rate in the principal component analysis algorithm, adaptive adjustment of sample length is achieved, reducing data with uneven sample lengths to the same dimensionality for various classes. Then, the 1DCNN extracts local features from bearing signals through one-dimensional convolution-pooling operations, while the SeNet network introduces a channel attention mechanism which can adaptively adjust the importance between different channels. Finally, the 1DCNN-SeNet model is compared with four classic models through experimental analysis on the CWRU bearing dataset. The experimental results indicate that the proposed method exhibits high diagnostic accuracy in rolling bearings, demonstrating good adaptability and generalization capabilities.

Funder

Quzhou City Science and Technology Plan project

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3