Abstract
The spread of the 5G technology in the telecom power applications increased the need to supply high power density with higher efficiency and higher power factor. Thus, in this paper, the performance of the different power factor correction ( PFC ) topologies implemented to work with high power density telecom power applications are investigated. Two topologies, namely the conventional and the bridge interleaved continues-current-conduction mode (CCM) PFC boost converters are designed. Selection methodology of the switching elements, the manufacturing of the boost inductors, and the optimal design for the voltage and current control circuits based on the proposed small signal stability modeling are presented. The printed circuit board (PCB) for the two different PFC topologies with a power rating of 2 kW were designed. PSIM simulation and the experiments are used to show the supply current total harmonic distortions (THD), voltage ripples, power efficiency, and the power factor for the different topologies with different loading conditions.
Funder
National Research Foundation of Korea
Ministry of Land, Infrastructure and Transport of the Korean government
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献