Peculiarities of Plasmodium falciparum Gene Regulation and Chromatin Structure

Author:

Watzlowik Maria Theresia,Das Sujaan,Meissner Markus,Längst Gernot

Abstract

The highly complex life cycle of the human malaria parasite, Plasmodium falciparum, is based on an orchestrated and tightly regulated gene expression program. In general, eukaryotic transcription regulation is determined by a combination of sequence-specific transcription factors binding to regulatory DNA elements and the packaging of DNA into chromatin as an additional layer. The accessibility of regulatory DNA elements is controlled by the nucleosome occupancy and changes of their positions by an active process called nucleosome remodeling. These epigenetic mechanisms are poorly explored in P. falciparum. The parasite genome is characterized by an extraordinarily high AT-content and the distinct architecture of functional elements, and chromatin-related proteins also exhibit high sequence divergence compared to other eukaryotes. Together with the distinct biochemical properties of nucleosomes, these features suggest substantial differences in chromatin-dependent regulation. Here, we highlight the peculiarities of epigenetic mechanisms in P. falciparum, addressing chromatin structure and dynamics with respect to their impact on transcriptional control. We focus on the specialized chromatin remodeling enzymes and discuss their essential function in P. falciparum gene regulation.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference131 articles.

1. World Malaria Report 2020: 20 Years of Global Progress and Challenges,2020

2. Drug resistance in Plasmodium

3. The timing of eukaryotic evolution: Does a relaxed molecular clock reconcile proteins and fossils?

4. A global map of dominant malaria vectors

5. Campbell Biology;Reece,2011

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3