Strain-Enhanced Thermoelectric Performance in GeS2 Monolayer

Author:

Ruan Xinying,Xiong Rui,Cui Zhou,Wen Cuilian,Ma Jiang-Jiang,Wang Bao-TianORCID,Sa BaishengORCID

Abstract

Strain engineering has attracted extensive attention as a valid method to tune the physical and chemical properties of two-dimensional (2D) materials. Here, based on first-principles calculations and by solving the semi-classical Boltzmann transport equation, we reveal that the tensile strain can efficiently enhance the thermoelectric properties of the GeS2 monolayer. It is highlighted that the GeS2 monolayer has a suitable band gap of 1.50 eV to overcome the bipolar conduction effects in materials and can even maintain high stability under a 6% tensile strain. Interestingly, the band degeneracy in the GeS2 monolayer can be effectually regulated through strain, thus improving the power factor. Moreover, the lattice thermal conductivity can be reduced from 3.89 to 0.48 W/mK at room temperature under 6% strain. More importantly, the optimal ZT value for the GeS2 monolayer under 6% strain can reach 0.74 at room temperature and 0.92 at 700 K, which is twice its strain-free form. Our findings provide an exciting insight into regulating the thermoelectric performance of the GeS2 monolayer by strain engineering.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Guangdong Basic and Applied Basic Research Foundation

Scientific Research Project of Fuzhou University

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3