Abstract
In this paper, a discrete moth–flame optimization algorithm for community detection (DMFO-CD) is proposed. The representation of solution vectors, initialization, and movement strategy of the continuous moth–flame optimization are purposely adapted in DMFO-CD such that it can solve the discrete community detection. In this adaptation, locus-based adjacency representation is used to represent the position of moths and flames, and the initialization process is performed by considering the community structure and the relation between nodes without the need of any knowledge about the number of communities. Solution vectors are updated by the adapted movement strategy using a single-point crossover to distance imitating, a two-point crossover to calculate the movement, and a single-point neighbor-based mutation that can enhance the exploration and balance exploration and exploitation. The fitness function is also defined based on modularity. The performance of DMFO-CD was evaluated on eleven real-world networks, and the obtained results were compared with five well-known algorithms in community detection, including GA-Net, DPSO-PDM, GACD, EGACD, and DECS in terms of modularity, NMI, and the number of detected communities. Additionally, the obtained results were statistically analyzed by the Wilcoxon signed-rank and Friedman tests. In the comparison with other comparative algorithms, the results show that the proposed DMFO-CD is competitive to detect the correct number of communities with high modularity.
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献