Effects of Residual Stress Distribution on Interfacial Adhesion of Magnetron Sputtered AlN and AlN/Al Nanostructured Coatings on a (100) Silicon Substrate

Author:

Ali Rashid,Renzelli Marco,Khan M.,Sebastiani MarcoORCID,Bemporad Edoardo

Abstract

The present study investigated the influence of nanoscale residual stress depth gradients on the nano-mechanical behavior and adhesion energy of aluminium nitride (AlN) and Al/AlN sputtered thin films on a (100) silicon substrate. By using a focused ion beam (FIB) incremental ring-core method, the residual stress depth gradient was assessed in the films in comparison with standard curvature residual stress measurements. The adhesion energy was then quantified by using a nanoindentation-based model. Results showed that the addition of an aluminum layer gave rise to additional tensile stress at the coating/substrate interface, which can be explained in terms of the differences of thermal expansion coefficients with the silicon substrate. Therefore, the coatings without the Al layer showed better adhesion because of a more homogeneous compressive residual stress in comparison with the coating having the Al layer, even though both groups of coatings were produced under the same bias voltage. Results are discussed, and some general suggestions are made on the correlation between coating/substrate property combinations and the adhesion energy of multilayer stacks. The results suggested that the Al bond layer and inhomogeneous residual stresses negatively affected the adhesion of AlN to a substrate such as silicon.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3