Development of DNA Pair Biosensor for Quantization of Nuclear Factor Kappa B

Author:

Wang ZhaohuiORCID,Wong Pak

Abstract

Nuclear factor kappa B (NF-κB), regulating the expression of several genes that mediate the inflammatory responses and cell proliferation, is one of the therapeutic targets for chronic inflammatory disease and cancer. A novel molecular binding scheme for the detection of NF-κB was investigated for its affinity to Ig-κB DNA composed by dye and quencher fluorophores, and this specificity is confirmed by competing with the DNA sequence that is complementary to the Ig-κB DNA. We create a normalization equation to remove the negative effects from the various initial fluorophore concentrations and the background noise. We also found that a periodic shaking at a frequency could help to stabilize the DNA–protein binding. The calibration experiment, using purified p50 (NF-κB), shows that this molecular probe biosensor has a detection limit on the order of nanomolar. The limit of detection is determined by the binding performance of dye and quencher oligonucleotides, and only a small portion of probes are stabilized by DNA-binding protein NF-κB. The specificity experiment also shows that p50/p65 heterodimer has the highest affinity for Ig-κB DNA; p65 homodimer binds with intermediate affinity, whereas p50 shows the lowest binding affinity, and Ig-κB DNA is not sensitive to BSA (bovine albumin serum). The experiment of HeLa nuclear extract shows that TNF-α stimulated HeLa nuclear extract has higher affinity to Ig-κB DNA than non-TNF-stimulated HeLa nuclear extract (4-h serum response). Therefore, the molecular binding scheme provides a rapid, quantitative, high throughput, and automated measurement of the DNA-binding protein NF-κB at low cost, which is beneficial for automated drug screening systems.

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3