Super-Resolution Multicomponent Joint-Interferometric Fabry–Perot-Based Technique

Author:

Zhang Yu,Lv Qunbo,Tang Yinhui,He Peidong,Zhu Baoyv,Sui Xuefu,Yang Yuanbo,Bai Yang,Liu Yangyang

Abstract

We propose a new spectral super-resolution technique combined with a Fabry–Perot interferometer (FPI) and an interferometric hyperspectral imager. To overcome the limitation of the maximal optical path difference (OPD) on the spectral resolution, the object spectrum is periodically modulated based on the FPI, and an optical Fourier transform of the modulated spectrum information is performed using a double-beam interferometer to obtain an interferogram. Drawing on the concept of nonlinear structured light microscopy, the displacement of the high-frequency interference information in the interferogram after adding the FPI is analyzed to restore the high-frequency interference information and improve the spectral resolution. The optical system has a compact structure with little impact on complexity, spectral range, or luminous flux. Our simulation results show that this method can realize multicomponent joint-interference imaging to obtain spectral super-resolution information. The effects of the FPI’s reflectance and interval are analyzed, and the reflectance needs to be within 20~80% and the interval must be as close as possible to the maximum optical range of the interferometer. Compared with previous, related innovations, this innovation has the advantages of higher system stability, higher data utilization, and better suitability for interferometric imaging spectrometers.

Funder

Key Program Project of Science and Technology Innovation of the Chinese Academy of Sciences

Science Technology Foundation Strengthening Field Fund Project

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3