MONWS: Multi-Objective Normalization Workflow Scheduling for Cloud Computing

Author:

Pillareddy Vamsheedhar Reddy,Karri Ganesh ReddyORCID

Abstract

Cloud computing is a prominent approach for complex scientific and business workflow applications in the pay-as-you-go model. Workflow scheduling poses a challenge in cloud computing due to its widespread applications in physics, astronomy, bioinformatics, and healthcare, etc. Resource allocation for workflow scheduling is problematic due to the computationally intensive nature of the workflow, the interdependence of tasks, and the heterogeneity of cloud resources. During resource allocation, the time and cost of execution are significant issues in the cloud-computing environment, which can potentially degrade the service quality that is provided to end users. This study proposes a method focusing on makespan, average utilization, and cost. The authors propose a task’s dynamic priority for workflow scheduling using MONWS, which uses the min-max algorithm to minimize the finish time and maximize resource utilization by calculating the dynamic threshold value for scheduling tasks on virtual machines. When the experimental results were compared to existing algorithms, MONWS achieved a 35% improvement in makespan, an 8% increase in maximum average cloud utilization, and a 4% decrease in cost.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3