Abstract
In Opportunistic Networks (OppNets), mobility of and contact between nodes are explored to create communication opportunities and exchange messages and information. A basic premise for a better performance of these networks is a collaboration of the nodes during communication. However, due to energy restriction factors, nodes may eventually fail to collaborate with message exchanges. In this work, we propose a routing mechanism called eGPDMI to improve message probability of delivery while optimizing nodes’ energy consumption. Unlike other algorithms proposed in OppNets literature, eGPDMI groups nodes by energy level and nodes interests using clustering techniques. Our major assumption is that retaining messages in nodes with the highest energy levels can improve network performance, thus overcoming the problem of nodes’ disconnection due to unwillingness to cooperate due to low energy values. Through questionnaire application and factorial design experiments, we characterize the impacts of energy levels in OppNets. Further, we apply performance evaluation of the eGPDMI mechanism in terms of effectiveness using mobility from real-world scenarios. The results show that our mechanism effectively reduces the degradation of the probability of delivery when the minimum energy level used for nodes to cooperate with communication increases.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献