A Novel Method to Achieve Selective Emitter Using Surface Morphology for PERC Silicon Solar Cells

Author:

Ju Minkyu,Park Jeongeun,Cho Young Hyun,Kim Youngkuk,Lim Donggun,Cho Eun-ChelORCID,Yi Junsin

Abstract

Recently, selective emitter (SE) technology has attracted renewed attention in the Si solar cell industry to achieve an improved conversion efficiency of passivated-emitter rear-contact (PERC) cells. In this study, we presented a novel technique for the SE formation by controlling the surface morphology of Si wafers. SEs were formed simultaneously, that is, in a single step for the doping process on different surface morphologies, nano/micro-surfaces, which were formed during the texturing processes; in the same doping process, the nano- and micro-structured areas showed different sheet resistances. In addition, the difference in sheet resistance between the heavily doped and shallow emitters could be controlled from almost 0 to 60 Ω/sq by changing the doping process conditions, pre-deposition and driving time, and temperature. Regarding cell fabrication, wafers simultaneously doped in the same tube were used. The sheet resistance of the homogeneously doped-on standard micro-pyramid surface was approximately 82 Ω/sq, and those of the selectively formed nano/micro-surfaces doped on were on 62 and 82 Ω/sq, respectively. As a result, regarding doped-on selectively formed nano/micro-surfaces, SE cells showed a JSC increase (0.44 mA/cm2) and a fill factor (FF) increase (0.6%) with respect to the homogeneously doped cells on the micro-pyramid surface, resulting in about 0.27% enhanced conversion efficiency.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3