Abstract
Current ionic polymer-metal composite (IPMC) always proves inadequate in terms of large attenuation and short working time in air due to water leakage. To address this problem, a feasible and effective solution was proposed in this study to enhance IPMC performance operating in air by doping polyethylene oxide (PEO) with superior water retention capacity into Nafion membrane. The investigation of physical characteristics of membranes blended with varying PEO contents revealed that PEO/Nafion membrane with 20 wt% PEO exhibited a homogeneous internal structure and a high water uptake ratio. At the same time, influences of PEO contents on electromechanical properties of IPMCs were studied, showing that the IPMCs with 20 wt% PEO presented the largest peak-to-peak displacement, the highest volumetric work density, and prolonged stable working time. It was demonstrated that doping PEO reinforced electromechanical performances and restrained displacement attenuation of the resultant IPMC.
Funder
High-level Talent Scientific Research Project of Inner Mongolia Agricultural University
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Key Scientific Research Project of Colleges and Universities in Henan Province
Subject
Polymers and Plastics,General Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献